膨胀机出口温度多少合适 钢的膨胀量计算公式?

[更新]
·
·
分类:贸易
2114 阅读

膨胀机出口温度多少合适

钢的膨胀量计算公式?

钢的膨胀量计算公式?

【1】可以根据公式热膨胀量温度差X热胀系数X长度5.802X长度 (mm)长度单位: m计算。
【2】当物体受热时,其中的粒子的运动速度就会加快,因此占据了额外的空间,这种现象称为膨胀。固体、液体、气体都有膨胀现象,液体的膨胀率约比固体大10倍,气体的膨胀率约比液体大100倍左右。膨胀有好有坏,比如,温度计的使用就是利用液体膨胀的原理。而铁轨之间的缝隙则是为了使铁轨不被膨胀所破坏。

SMT过炉温度如何把握?

正确设定回流炉温度曲线是获得优良焊接质量的关键。
全热风回流焊是SMT 大生产中重要的工艺环节,它是一种自动群焊过程,成千上万个焊点在短短几分钟内一次完成,其焊接质量的优劣直接影响到产品的质量和可靠性,对于数字化的电子产品,产品的质量几乎就是焊接的质量。做好回流焊,人们都知道关键是设定回流炉的炉温曲线,有关回流炉的炉温曲线,许多专业文章中均有报导,但面对一台新的全热风回流炉,如何尽快设定回流炉温度曲线呢?这就需要我们首先对所使用的锡膏中金属成分与熔点、活性温度等特性有一个全面了解,对全热风回流炉的结构,包括加热温区的数量、热风系统、加热器的尺寸及其控温精度、加热区的有效长度、冷却区特点、传送系统等应有一个全面认识,以及对焊接对象--表面贴装组件(SMD)尺寸、元件大小及其分布做到心中有数,不难看出,回流焊是SMT 工艺中复杂而又关键的一环,它涉及到材料、设备、热传导、焊接等方面的知识。
回流焊预热区通常是指由常温升高至150℃左右的区域,在这个区域中,温度缓升以利锡膏中的部分溶剂及水气能够及时挥发。但PCB表面的零件大小不一,吸热裎度也不一,为免有温度有不均匀的现象,在预热区升温的速度通常控制在1.5℃--3℃/sec。预热区均匀加热的另一目的,是要使溶剂适度的挥发并活化助焊剂,因为大部分助焊剂的活化温度落在150℃以上。
快速升温有助于快速达到助焊剂软化的温度,因此助焊剂可以快速地扩散并覆盖到最大区域的焊点,它可能也会让一些活化剂融入实际合金的液体中。可是,升温如果太快,由于热应力的作用,可能会导致陶瓷电容的细微裂纹(micro crack)、PCB所热不均而产生变形(Warpage)、空洞或IC晶片损坏,同时锡膏中的溶剂挥发太快,也会导致塌陷产生的危险。
较慢的温度爬升则允许更多的溶剂挥发或气体逃逸,它也使助焊剂可以更靠近焊点,减少扩散及崩塌的可能,但是升温太慢也会导致过度氧化而降低助焊剂的活性。
炉子的预热区一般占加热通道长度的1/4—1/3,其停留时间计算如下:设环境温度为25℃,若升温斜率按照3℃/sec计算,则(150-25)/3即为42sec;如升温斜率按照1.5℃/sec计算,则(150-25)/1.5即为85sec。通常根据组件大小差异程度调整时间以调控升温斜率在2℃/sec以下为最佳。
另外还有几种不良现象都与预热区的升温有关,下面一一说明:
1. 塌陷:
这主要是发生在锡膏融化前的膏状阶段,锡膏的黏度会随著温度的上升而下降,这是因为温度的上升使得材料内的分子因热而震动得更加剧烈所致;另外温度迅速上升会使得溶剂(Solvent)没有时间适当地挥发,造成黏度更迅速的下降。正确来说,温度上升会使溶剂挥发,并增加黏度,但溶剂挥发量与时间及温度皆成正比,也就是说给一定的温升,时间较长者,溶剂挥发的量较多。因此升温慢的锡膏黏度会比升温快的锡膏黏度来的高,锡膏也就必较不容易产生塌陷。
2. 锡珠:
迅速挥发出来的气体会连锡膏都一起往外带,在小间隙的零件下会形成分离的锡膏区块,迴焊时分离的锡膏区块会融化并从零件底下冒出而形成锡珠。
3. 锡球:
升温太快时,溶剂气体会迅速的从锡高中挥发出来并把飞溅锡膏所引起。减缓升温的速度可以有效控制锡球的产生。但是升温太慢也会导致过度氧化而降低助焊剂的活性。
4. 灯蕊虹吸现象:
这个现象是焊料在润湿引脚后,焊料从焊点区域沿引脚向上爬升,以致焊点产生焊料不足或空銲的问题。其可能原因是锡膏在融化阶段,零件脚的温度高于PCB的銲垫温度所致。可以增加PCB底部温度或是延长锡膏在的熔点附近的时间来改善,最好可以在焊料润湿前达到零件脚与焊垫的温度平衡。一但焊料已经润湿在焊垫上,焊料的形状就很难改变,此时也不在受温升速率的影响。
5. 润湿不良:
一般的润湿不良是由于焊接过程中锡粉被过度氧化所引起,可经由减少预热时锡膏吸收过多的热量来改善。理想的回焊时间应儘可能的短。如果有其他因素致加热时间不能缩短,那建议从室温到锡膏熔点间採线性温度,这样迴焊时就能减少锡粉氧化的可能性。
6. 虚焊或“枕头效应”(Head-In-Pillow):
虚焊的主要原因可能是因为灯蕊虹吸现象或是不润湿所造成。灯蕊虹吸现象可以参照灯蕊虹吸现象的解决方法。如果是不润湿的问题,也就是枕头效应,这种现象是零件脚已经浸入焊料中,但并未形成真正的共金或润湿,这个问题通常可以利用减少氧化来改善,可以参考润湿不良的解决方法。
7. 墓碑效应及歪斜:
这是由于零件两端的润湿不平均所造成的,类似灯蕊虹吸现象,可以藉由延长锡膏在的熔点附近的时间来改善,或是降低升温的速率,使零件两端的温度在锡膏熔点前达到平衡。另一个要注意的是PCB的焊垫设计,如果有明显的大小不同、不对称、或是一方焊垫有接地(ground)又未设计热阻(thermal thief)而另一方焊垫无接地,都容易造成不同的温度出现在焊垫的两端,当一方焊垫先融化后,因表面张力的拉扯,会将零件立直(墓碑)及拉斜。
8. 空洞(Voids):
主要是因为助焊剂中的溶剂或是水气快速氧化,且在焊料固化前未即时逸出所致。浸润区浸润区又称活性区,在恆温区温度通常维持在150℃±10的区域,此时锡膏处于融化前夕,焊膏中的挥发物进一步被去除,活化剂开始启动并有效的去除焊接表面的氧化物。PCB表面温度受热风对流的影响,不同大小、质地不同的零组件温度能保持均匀,板面温度差△T接近最小值。曲线形态接近水平状,它也是评估回流炉工艺的一个窗口,选择能维持平坦活性温度曲线的炉子将提高焊接的效果,特别是防止立碑缺陷的产生。通常恆温区在炉子的2、3区之间,维持时间约为60~~120s,若时间过长也会导致锡膏氧化问题,以致焊接后飞珠增多。
回焊区
回焊区温度最高,通常叫做液态以上时间(TAL, time above liquidous)。此时焊料中的锡与焊垫上的铜或金由于扩散作用而形成金属间的化合物,以锡铜合金为例,当锡膏融化并迅速润湿铜层,锡原子与铜原子在其介面上互相渗透初期Sn-Cu合金的结构为Cu6Sn5,其厚度为1-3μ,回流区时炉子内的关键阶段,因爲装配上的温度梯度必须最小,TAL必须保持在锡膏製造商所规定的参数之内。産品的峰值温度也是在这个阶段达到的 - 装配达到炉内的最高温度,必须小心的是,不要超过板上任何温度敏感元件的最高温度和加热速率。
例如,一个典型符合无铅制程的钽电容具有的最高温度爲260°C只能持续最多10秒钟。装配上所有的点应该同时、同速率达到相同的峰值温度,以保证所有零件在炉内经历相同的环境。在回流区之后,产品冷却,固化焊点,将装配为后面的工序准备。控制冷却速度也是关键的,冷却太快可能损坏装配,冷却太慢将增加TAL,可能造成脆弱的焊点。
回流焊的峰值温度,通常取决于焊料的熔点温度及组装零件所能承受的温度。一般的峰值温度应该比锡膏的正常熔点温度要高出约25~30°C,才能顺利的完成焊接作业。如果低于此温度,则极有可能会造成冷焊与润湿不良的缺点。
回流焊冷却区
一般认为冷却区应迅速降温使焊料凝固,迅速冷却也可以得到较细的合晶结构,提高焊点的强度及焊点光亮,表面连续并呈弯月面状。
相反的,在熔点以上缓慢的冷却容易导致过量的介金属化合物产生及较大合晶颗粒,降低抗疲劳强度。采用比较快的冷却速率可以有效吓阻介金属化合物的生成。
在加速冷却速度的同时须注意到零件耐冲击的能力,一般的电容所容许的最大冷却速率大约是4°C/min。过快的冷却速率很可能会引起应力影响而产生龟裂(Crack)。也可能引起焊垫与PCB或焊垫与焊点的剥离,这是由于零件、焊料、与焊点各拥有不同的热膨胀系数及收缩率的结果。